
(copy).jpg

Basic definitions and properties
Differentiation rules and properties

Derivatives of higher order
Derivatives in physics

Applications of derivatives

Transition Maths and Algebra with Geometry

Tomasz Brengos

Lecture Notes
Electrical and Computer Engineering

Tomasz Brengos Transition Maths and Algebra with Geometry 1/63



Basic definitions and properties
Differentiation rules and properties

Derivatives of higher order
Derivatives in physics

Applications of derivatives

Contents

1 Basic definitions and properties

2 Differentiation rules and properties

3 Derivatives of higher order

4 Derivatives in physics

5 Applications of derivatives

Tomasz Brengos Transition Maths and Algebra with Geometry 2/63



Basic definitions and properties
Differentiation rules and properties

Derivatives of higher order
Derivatives in physics

Applications of derivatives

Tangent lines
Consider a line tangent to the graph of a function f at some point
x0 belonging to its domain.

Image source: wikipedia.org
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Tangent lines

If the tangent line y = a · x + b exists (because in general it
doesn’t have to) then the slope a of the tangent line measures how
a function changes around x0.

Question

Given a function y = f (x) and a point x0 from its domain how can
we compute the slope a of the tangent to y = f (x) at x0?
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Tangent lines

Instead of a tangent line, consider a secant line passing through
(x0, f (x0)) and (x0 + h, f (x0 + h)). Slope of this line is given by

f (x0 + h)− f (x0)

x0 + h − x0
=

f (x0 + h)− f (x0)

h
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Secant line
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Tangent lines

Observe that as h goes to 0 the secant line approaches to the tangent

line at x0.
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Tangent lines

Question

Given a function y = f (x) and a point x0 from its domain how can
we compute the slope a of the tangent to y = f (x) at x0?

Answer: Consider the slopes of secants

f (x0 + h)− f (x0)

x0 + h − x0
=

f (x0 + h)− f (x0)

h

and calulate their limit as h tends to 0.
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Derivative

Definition

The derivative of a function y = f (x) is a function y = f ′(x)
whose value at x0 is defined by

f ′(x0) := lim
h→0

f (x0 + h)− f (x0)

h

Warning

Note that f ′ may not exist at some points belonging to the domain
of f .

Definition

If f ′ exists at a point x0 then we say that the function y = f (x) is
differentiable at x0.
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Derivative: examples

Consider a function f (x) = a · x + b and find its derivative.

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
=

lim
h→0

a · (x0 + h) + b − (a · x0 + b)

h
= lim

h→0

a · h
h

= a.
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Derivative: examples

Consider a function f (x) = x2 and find its derivative.

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
= lim

h→0

(x0 + h)2 − x2
0

h
=

lim
h→0

x2
0 + 2x0 · h + h2 − x2

0

h
= lim

h→0

2x0 · h + h2

h
= lim

h→0
(2 · x0 + h) = 2x0.
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Derivative: examples

Consider a function f (x) = |x |. Its derivative at x0 = 0 doesn’t
exist because the limit

lim
h→0

f (x0 + h)− f (x0)

h
= lim

h→0

|0 + h| − |0|
h

=

lim
h→0

|h|
h

doesn’t exist.
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Geometrical interpretation

The derivative f ′(x0) at x0 is equal to the slope of the tangent line to the curve

y = f (x) at x0.

Image source: wikipedia.org
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Geometrical interpretation

If the tangent line to the curve y = f (x) at point x0 is given by an
equation y = a · x + b then

a = f ′(x0),

b = −f ′(x0)x0 + f (x0).

Equation of tangent

Equation of the tangent line to the curve y = f (x) at point x0 is
given by

y = f ′(x0) · (x − x0) + f (x0)
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One-sided derivatives

Definition

Let y = f (x) be a function. A left-hand (right-hand) derivative f ′−
(resp. f ′+) at x0 is defined by

f ′−(x0) = lim
h→0−

f (x0 + h)− f (x0)

h
,

f ′+(x0) = lim
h→0+

f (x0 + h)− f (x0)

h
.

Remark

There are functions whose left-hand and right-hand derivative exist
but whose proper derivative doesn’t (e.g. y = |x |).
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One-sided derivatives

Theorem

Let y = f (x) be a function whose left-hand and right-hand
derivatives exist at x0 and

f ′−(x0) = f ′+(x0).

Then f ′(x0) exists and

f ′(x0) = f ′−(x0) = f ′+(x0).
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Differentiation and continuity

Theorem

If a function y = f (x) is differentiable at x0 then it is continuous
at x0.

Remark

If a function is continuous it doesn’t mean it is differentiable (e.g.
y = |x |).
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Differentiation rules

Theorem

(c)′ = 0 (derivative of a constant function is zero),

[c · f (x)]′ = c · f ′(x),

[f (x) + g(x)]′ = f ′(x) + g ′(x),

[f (x) · g(x)]′ = f ′(x) · g(x) + f (x) · g ′(x) (product rule),(
f (x)
g(x)

)′
= f ′(x)·g(x)−f (x)·g ′(x)

[g(x)]2 (quotient rule),

[f (g(x))]′ = f ′(g(x)) · g ′(x) (chain rule).

Tomasz Brengos Transition Maths and Algebra with Geometry 19/63



Basic definitions and properties
Differentiation rules and properties

Derivatives of higher order
Derivatives in physics

Applications of derivatives

Differentiating inverse functions

Theorem

Let y = f (x) be a 1-1 function and let f be differentiable at x0

with f ′(x0) 6= 0. Then the inverse function x = f −1(y) is
differentiable at y0 = f (x0) and

(f −1)′(y0) =
1

f ′(x0)
.
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Differentiating inverse functions

Example: Consider y = x2 defined for D = {x ∈ R | x ≥ 0}. It is
1− 1 and f ′(x) = 2 · x . For any x0 > 0 we have f ′(x0) 6= 0. So for
any x0 > 0 the inverse f −1(y) =

√
y is differentiable at

y0 = f (x0) = x2
0 and

(f −1)′(y0) = (
√

y)′y=y0
=

1

f ′(x0)
=

1

2x0
=

1

2
√

y0
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Derivatives of elementary functions

Theorem

(xn)′ = n · xn−1 for n ∈ Z \ {0},
(xα)′ = α · xα−1 for α ∈ R and x > 0,

(sin x)′ = cos x ,

(cos x)′ = − sin x ,

(tan x)′ = 1
cos2 x

for x 6= π
2 + kπ,

(cot x)′ = − 1
sin2 x

for x 6= kπ,

(ex)′ = ex ,

(ax)′ = ax ln a for a > 0 and a 6= 1,

(arcsin x)′ = 1√
1−x2

for |x | < 1,

(arccos x)′ = − 1√
1−x2

for |x | < 1,
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Derivatives of elementary functions

Theorem

(arctan x)′ = 1
1+x2 ,

(ln x)′ = 1
x for x > 0,

(loga x)′ = 1
x ln a for x > 0 and 0 < a 6= 1.
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Examples

Calculate

arctan(ln x)′,

(ex · sin x)′,

(
x2 + 1

x2 − 1
)′.
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Derivatives of higher order

Definition

Second derivative of y = f (x) is a function f ′′ defined by

f ′′(x) = (f ′(x))′.

Generally, we define n-th derivative of f by

f (n) = [f (n−1)]′

Notation

f ′, f ′′, f ′′′, . . . , f (n)

dy

dx
,

d2y

dx2
, . . . ,

dny

dxn
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Derivatives of higher order

Warning

If a function is n times differentiable it does not mean it is n + 1
times differentiable. Consider a function f (x) = x |x |.
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Linear approximation

Definition of derivative (once again!)

A derivative f ′(a) at point a of the function y = f (x) is is a
number defined as

f ′(a) = lim
h→0

f (a + h)− f (a)

h
.

We can restate the definition as follows.

Equivalent definition of derivative

A derivative f ′(a) at point a of the function y = f (x) is a number
satisfying

lim
h→0

f (a + h)− f (a)− f ′(a)h

h
= 0.

Tomasz Brengos Transition Maths and Algebra with Geometry 28/63



Basic definitions and properties
Differentiation rules and properties

Derivatives of higher order
Derivatives in physics

Applications of derivatives

Linear approximation

Linear approximation

If parameter h is very close to 0 then

f (a + h) ≈ f (a) + f ′(a)h.

In other words, if a variable x is close to a then

f (x) ≈ f (a) + f ′(a)(x − a).

Example

Let f (x) = sin(x) and a = π. If x is close to π then

sin(x) ≈ sin(π) + sin′(π) · (x − π) = −x + π.
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Higher order derivatives and approximation

Question

Can we use derivatives of higher order to approximate functions
better?

Yes, we can!
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Quadratic approximation

Quadratic approximation

Let y = f (x) be a function. We say that y = f (x) is well
approximated by a quadratic function ax2 + bx + c around x0 if

lim
h→0

f (x0 + h)− ah2 − bh − c

h2
= 0.

Theorem

Let y = f (x) be twice differentiable at x0 and let the function
y = f (x) be well approximated by a(x − x0)2 + b(x − x0) + c
around x0. Then

a =
f ′′(x0)

2
b = f ′(x0) c = f (x0).
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Quadratic approximation

Quadratic approximation

If parameter h is very close to 0 then

f (a + h) ≈ f (a) + f ′(a)h +
f ′′(a)

2
h2.

In other words, if a variable x is close to a then

f (x) ≈ f (a) + f ′(a)(x − a) +
f ′′(a)

2
(x − a)2.
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Quadratic approximation

Example

Example Let f (x) = cos x and a = 0. Then around a = 0 we have

cos x ≈ cos(0)− sin(0) · x +
− cos(0)

2
· x2 = 1− x2

2
.
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Polynomial approximation

Polynomial approximation

Let y = f (x) be a function. We say that y = f (x) is well approximated
by a polynomial p(x) = anxn + . . .+ a1x + a0 of degree n around a point
x0 if

lim
h→0

f (x0 + h)− p(h)

hn
= 0.

Theorem

Let y = f (x) be n times differentiable at x0 and let the function
y = f (x) be well approximated by a polynomial
p(x) = an(x − x0)n + . . .+ a0 around x0. Then

ak =
f (k)(x0)

k!
for k = 0, . . . , n.
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Polynomial approximation

Example

Example Let f (x) = cos x and a = 0. Then around a = 0 we have

cos x ≈ 1,

cos x ≈ 1− x2

2
,

cos x ≈ 1− x2

2
+

x4

4!
,

cos x ≈ 1− x2

2
+

x4

4!
− x6

6!
,

. . .

cos x ≈ 1− x2

2
+

x4

4!
− . . .+ (−1)n

x2n

2n!
.
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Polynomial approximation

image source: wolframalpha.com
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Different notations

Let y = f (x). Sometimes different symbols for derivatives are used:

·
y

dy

dx
f ′ Dx f
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Physics 101

Velocity and acceleration

Derivatives measure the rate of change of one variable with respect
to the other. If x = s(t) is a function describing a position of a
point x at a given time t then

v(t) = s ′(t) - velocity at a given time t,

a(t) = v ′(t) = s ′′(t) - acceleration at a given time t.
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Physics 101

Note

We can also consider the values of the function s(t) to be more
than 1-dimensional vectors, i.e.

~x = s(t).

If the function depends on one variable (in our case time t) then
the differentiation is done coordinate wise.
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Physics 101

Example

Let a position of a particle be described using the following
function

s(t) = (a · eb·t cos(t), a · eb·t sin(t)) where a, b are parameters.

Find its velocity and acceleration vector at time t = 1.
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Error approximation

Let’s recall

For a function y = f (x) if parameter h is very close to 0 then

f (a + h) ≈ f (a) + f ′(a)h.

In other words,

f (a + h)− f (a) ≈ f ′(a)h ∆f ≈ f ′(a)∆x .
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Newton’s method

Suppose we are given a function f (x) and we want to find a point
(a good estimate will suffice) x such that f (x) = 0.

An application?

Calculate a good approximation of e.g.
√

3.

Answer: consider f (x) = x2 − 3.
1 Guess a rough estimate of a zero. Say x = 2,
2 consider the tangent line to the curve f (x) at x = 2. Since

f ′(x) = 2x the formula for the tangent line is given
y = 4x − 7,

3 the point at which the tangent line crosses the x-axis should
be a better estimate of zero. Indeed, the solution is x = 7

4 .
4 repeat the whole procedure (2)-(4) until you’re satisfied with

the error.
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Newton’s method - general formula

Consider y = f (x) and x0. Formula for the tangent line is given:

y = f ′(x0)(x − x0) + f (x0)

This line crosses the x-axis whenever 0 = f ′(x0)(x − x0) + f (x0).
In other words,

x = x0 −
f (x0)

f ′(x0)
.

Procedure:

Guess x0 which is relatively close to the solution,
consider a recursively defined sequence:

xn+1 = xn −
f (xn)

f ′(xn)
.

expect that for a large n the error |x − xn| (x is the actual
solution) to be small.
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Newton’s method -homework

1 approximate 5
√

7,

2 the function f (x) = x3 − 3x2 − 3x + 6 has a root between 3
and 4 (check signs of values at endpoints). Find a good
approximation of the root using Newtons formula and divide
and conquer method. Compare the algorithms.
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Extreme values: introduction

Definition

Let a be a point of the domain of a function y = f (x). The value
f (a) is called

local maximum if f (x) ≤ f (a) for all domain points in an
open interval containing a,

local minimum if f (x) ≥ f (a) for all domain points in an open
interval containing a,

absolute maximum if f (x) ≤ f (a) for all domain points,

absolute minimum if f (x) ≥ f (a) for all domain points.
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Extreme values

Neccessary condition for local extreme values

If a function y = f (x) has a local maximum or minimum at an
interior point a of its domain and f ′(a) exists then

f ′(a) = 0.

Proof..

Definition

An interior point a of the domain of a function y = f (x) is called a
critical point if f ′(c) = 0 or f ′(c) doesn’t exist.
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Rolle’s theorem and Mean Value Theorem: motivations

Question

Suppose two different functions have the same derivative; what
can you say about the relationship between the two functions?

Question

Suppose you drive a car from toll booth on a toll road to another
toll booth at an average speed of 150 km per hour. What can be
concluded about your actual speed during the trip? In particular,
did you exceed the 140 km per hour speed limit?
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Rolle’s Theorem
Theorem

Let y = f (x) be continuous at every point of a closed interval [a, b]
and let it be differentiable at every point of an open interval (a, b).
If only f (a) = f (b) then there is at least one x0 ∈ (a, b) for which

f ′(x0) = 0.

Proof: It follows by the fact that f (x) has an extreme value for
argument in (a, b).

Image source: wikipedia.org
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Mean Value Theorem
Mean Value Theorem

Let y = f (x) be a function which is continuous at every point of
[a, b] and differentiable at every point of (a, b). Then there is at
least one x0 ∈ (a, b) for which

f ′(x0) =
f (b)− f (a)

b − a

Image source: wikipedia.org
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Mean Value Theorem

Mean Value Theorem

Let y = f (x) be a function which is continuous at every point of
[a, b] and differentiable at every point of (a, b). Then there is at
least one x0 ∈ (a, b) for which

f ′(x0) =
f (b)− f (a)

b − a

Proof: Let m = f (b)−f (a)
b−a and define

g(x) = f (x)−m · (x − a)− f (a). Function y = g(x) is
differentiable and g ′(x) = f ′(x)−m. Moreover, g(a) = g(b) = 0.
By Rolle’s theorem there is x0 ∈ (a, b) such that g ′(x0) = 0. In

other words, f ′(x0) = m = f (b)−f (a)
b−a .
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Mean Value Theorem: Corollaries

Corollary

If y = f (x) is a function whose derivative is constantly equal to 0
then f is a constant function.

Proof...

Corollary

Suppose y = f (x) is continuous at every point of [a, b] and
differentiable at every point of (a, b). If f ′(x) > 0 for any
x ∈ (a, b) then the function y = f (x) is increasing.

Proof...
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Extreme values

Sufficient condition for local extreme values

Let y = f (x) be a continuous function and let a be a critical point
of f . Then

if f ′(x) > 0 for x < a and f ′(x) < 0 for x > a then f has a
local maximum at a,

if f ′(x) < 0 for x < a and f ′(x) > 0 for x > a then f has a
local minimum at a,

if f ′(x) doesn’t change sign around a then there is no extreme
value at a.

Proof follows by 2nd corollary of MVT. Example: Consider a
function f (x) = |x | · (x2 − 3).
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Indeterminate expressions

L’Hospital rule

Let D be a set defined by (a, b) \ {c} and let f , g : D → R be two
functions defined on D. If y = f (x) and y = g(x) are differentiable
at every point of D and g ′(x) 6= 0 for any x ∈ D and, moreover,

lim
x→c

f (x) = lim
x→c

g(x) = 0 or lim
x→c

f (x) = ± lim
x→c

g(x) = ±∞

then

lim
x→c

f ′(x)

g ′(x)
= L =⇒ lim

x→c

f (x)

g(x)
= L
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Indeterminate expressions

L’Hospital rule (a different version)

Let D be a set defined by (a,∞) and let f , g : D → R be two
functions defined on D. If y = f (x) and y = g(x) are differentiable
at every point of D and g ′(x) 6= 0 for any x ∈ D and, moreover,

lim
x→∞

f (x) = lim
x→∞

g(x) = 0 or lim
x→∞

f (x) = ± lim
x→∞

g(x) = ±∞

then

lim
x→∞

f ′(x)

g ′(x)
= L =⇒ lim

x→∞

f (x)

g(x)
= L
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Indeterminate expressions

Remark

L’Hostpital rule is used when dealing with indeterminate
expressions of the form 0

0 or ∞∞ .

Remark

L’Hostpital rule can be applied indirectly to other indeterminate
expressions:

0 · ∞: f · g = f
1
g

,

∞−∞: f − g =
1
g
− 1

f
1
fg

,

00,∞0, 1∞: f g = eg ln f
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Indeterminate expressions

Example:

lim
x→0

ex − 1

x
= lim

x→0

ex

1
= e0 = 1.

lim
x→1

x
1

x−1 = lim
x→1

e
1

x−1
ln x ,

lim
x→1

1

x − 1
ln x = lim

x→1

1
x

1
= 1.
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L’Hostpital rule: limitations

Warning

It may happen that

lim
x→c

f ′(x)

g ′(x)

doesn’t exist. If this is the case then we CANNOT conclude
anything about

lim
x→c

f (x)

g(x)

Consider a limit limx→∞
3x−sin x
2x+sin x .
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L’Hospital rule - the controversy (ies)

Fact

Bernoulli and L’Hospital signed a contract which gave l’Hospital
the right to use Bernoulli’s discoveries as he pleased.

Fact

L’Hospital rule is mostly about circular reasoning.

To see this consider

lim
x→0

sin x

x
lim
x→0

ex − 1

x
.
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Convexity and concavity

Definition

A function y = f (x) is said to be convex (concave up) on an
interval I if f ′(x) is increasing on I . A function y = f (x) is said to
be concave (concave down) on an interval I if f ′(x) is decreasing
on I .

Example: consider y = x3.
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Convexity and concavity

Second derivative test for convexity

A function y = f (x) is convex on an interval where f ′′(x) > 0 and
is concave whenever f ′′(x) < 0.

Definition

A point a of the domain of y = f (x) for which f ′(a) exists and
around which convexity changes is called a point of inflection.

Theorem

If a is a point of inflection of y = f (x), where f is twice
differentiable, then

f ′′(a) = 0.
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Second derivative test for extreme values

Theorem

Let a function y = f (x) be twice differentiable in a neighbourhood
of a point a of its domain. Then:

if f ′(a) = 0 and f ′′(a) < 0 then f has a local maximum at a,

if f ′(a) = 0 and f ′′(a) > 0 then f has a local minimum at a.
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